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1. Fixed Order Approach

• Perturbative description of e+e− → h + X
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Figure : Diagrammatic representation of dσh

dxp
(xp, s)

• xp = 2ph√
s

(0 ≤ xp ≤ 1)
√

s =
√

k2

• XS to produce h = XS to produce parton i

× Probability that i emits h

or

dσh

dxp
(xp, s) =

∑

i

∫ 1

xp

dy

y

dσi

d(xp/y)

(

xp

y
, s, Q2

)

Dh
i (y, Q2)
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• Total XS independent of factorization scale Q

• Dh
i (y, Q2) are the fragmentation functions,

probability that i emits h at momentum fraction y

• dσi

d(xp/y)

(

xp

y , s, Q2
)

perturbatively calculable

as series in as = αs

2π .

Keep Q = O(
√

s) to make an
s lnm Q2

s terms small

• ∴ need Q dependence of Dh
i (y, Q2)

• Evolution of FFs in factorization scale Q
described by DGLAP equation

d

d lnQ2
D(x, Q2) =

∫ 1

x

dy

y
P (y, as(Q

2))D

(

x

y
, Q2

)

(D = (Dg, Dd, Dd̄, Du, ...))

• P as series in as is good approximation at large x.
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• “large x”: Data can be well described down to x = 0.1.
E.g. analyses of KKP
(Kniehl, Kramer, Pötter - Nucl. Phys. B582 (2000) 514)
or AKK
(Albino, Kniehl, Kramer - Nucl. Phys. B725 (2005) 181;
B734 (2006) 50),

• FFs parameterized as

Di = Nxα(1 − x)β

and N , α, β for each FF
and also αs(MZ) are fitted to e+e− inclusive data
for light charged hadron (π±, K±, p/p̄) production
from ALEPH, DELPHI, OPAL, SLD and TPC.

• Gives competitive αs(MZ)

• FFs well constrained
and lead to good description of hadron production data
from pp and pp̄ collisions (e.g. PHENIX, UA1, STAR)
provided pT is not too low.
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2. Double Logarithms

• Procedure of FF determination
has some similarities with global fits of PDFs

• However, PDFs determined
down to much smaller x (10−3 or 10−4)
since singularities for x → 0 in spacelike case,

Pqq, Pqg → 0, α
2

s

1

x

Pgq, Pgg → αs

1

x
, α

2

s

1

x

weaker than those in timelike splitting functions

Pqq, Pqg → 0, α
2

s

1

x

Pgq, Pgg → αs

1

x
, α

2

s

ln
2 x

x

• Want to describe small (< 0.1) x data at the same time.
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So,

• Splitting function P (x, as) at LO, asP
(0)(x),

contains x → 0 divergence as/x,
a double logarithm (DL)

• At higher orders in the splitting function,
DLs are of the form
(1/x)(as lnx)2(as ln2 x)r, r = −1, ...,∞

• So DGLAP equation
in fixed order approach (series in as)

is bad approximation for ln(1/x) = O(a
−1/2
s )

• At small x, evolution better described by
Double Logarithmic Approximation (DLA),
which accounts for all DLs in the evolution
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• DLA equation accounts for all DLs,
which arise from tree level gluon emission off quark/antiquark
line

quark

gluon

Figure : Diagram containing DLs

• (i − 1)th gluon emits ith gluon, probability ∝

as
dθi

θi

dEi

Ei
∝ as ln2

• To pick out largest logarithms,
strongly order energies and emission angles of gluons,
(E, θ)i ≪ (E, θ)i−1
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3. Resumming DLs in DGLAP

Evolution

• DLA equation

d

d lnQ2
D(x, Q2) =

∫ 1

x

dy

y

2CA

y
Aas(y

2Q2)D

(

x

y
, y2Q2

)

where

A =

(

0 2CF

CA

0 1

)

(1)

for D = (DΣ, Dg) (DΣ = 1
nf

∑nf

q=1(Dq + Dq̄)),

while A = 0 for valence and non-singlet quark FFs

• Use DLA equation to obtain
complete DL contribution to splitting function, PDL

• Then in DGLAP equation (at LO), replace

asP
(0)(x) −→ asP

(0)
(x) + PDL(x, as),

where asP
(0)

(x) is asP
(0)(x)

after DL (as/x) has been subtracted
to prevent double counting
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• To obtain PDL from DLA equation,
work in Mellin space,

f(ω) =

∫ 1

0

dxxωf(x)

• DLs in Mellin space are of the form (as/ω)(as/ω
2)r+1,

i.e. singularities as ω → 0

• DLA equation in Mellin space reads

(

ω + 2
d

d lnQ2

)

d

d lnQ2
D(ω, Q2) = 2CAas(Q

2)AD(ω, Q2)

• Insert DGLAP equation in Mellin space
(accurate at small ω)

d

d lnQ2
D(ω, Q2) = PDL(ω, as(Q

2))D(ω, Q2),

then DLA equation without higher order terms reads

2(PDL)2 + ωPDL − 2CAasA = 0
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• Choose solution

PDL(ω, as) =
A

4

(

−ω +
√

ω2 + 16CAas

)

,

since its expansion in as yields

asP
DL(0)(ω, as) =

(

0 as
4CF

ω

0 as
2CA

ω

)

, (2)

which agrees with LO (and NLO) DL in literature

• This result contains all DLs in splitting function

• This result in x space reads

PDL(x, as) =
A
√

CAas

x ln 1
x

J1

(

4
√

CAas ln
1

x

)

• As x → 0, PDL(x, as) → 1

x ln
3

2
1

x

−→ Less than LO singularity
ln2 1

x

x
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• To summarize, evolve FFs via

d

d lnQ2
D(x, Q2) =

∫ 1

x

dy

y
P (y, as(Q

2))D

(

x

y
, Q2

)

but for P use

asP
(0)(x) −→ asP

(0)
(x) + PDL(x, as)

where PDL contains complete DL contribution,

asP
(0)

(x) is asP
(0)(x)

after DLs (of form as/x at LO) are subtracted
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Figure : (i) Pgg(x, as) calculated in the DL+LO(+LOδ)
scheme, (ii) Pgg(x, as) calculated to O(as) in the FO
approach (labelled “LO”), and (iii) PDL

gg (x, as) (labelled
“DL”). as = 0.118/(2π).
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• Note: DLs are the most singular soft gluon logarithms.
The next SGL, the single logarithm, is present at LO.
However, this SL is of O(asω

0)
−→ does not need to be resummed.

• At NLO, a number of SGLs occur (DL, SL, ...)
which must be resummed (since they are singular).

• Our method can be applied at higher orders
by subtracting all SGLs,
then adding in the complete DL contribution,
neglecting SLs and smaller SGLs,
since one assumes their resummed contributions are small
relative to the DL one.

• Generally,

P (x, as) =
∞
∑

n=1

an
s PFO(n−1)(ω) +

∞
∑

m=1

(as

ω

)m

gm

( as

ω2

)

(3)

• PFO(n−1)(ω) finite for ω → 0

• m = 1 term contains all DLs

• m = 2 term contains all SLs
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4. Connection to the MLLA

• This approach is equivalent to adding in
remaining fixed order contribution to DLA equation,

d

d lnQ2
D(ω, Q2) =

(

ω + 2
d

d lnQ2

)−1

2CAas(Q
2)AD(ω, Q2)

+ as(Q
2)P

(0)
(ω)D(ω, Q2)

• This DLA+FO equation reproduces
the Modified Leading Logarithmic Approximation (MLLA)
by making two approximations:

1. Approximate asP
(0)

(ω) by asP
(0)

(ω = 0),
which equals the LO single logarithm (SL),

P SL(0)(ω) =

(

0 −3CF
2
3TRnf − 11

6 CA − 2
3TRnf

)

(4)

2. Use small ω DLA result

Dq,q =
CF

CA
Dg

Then gluon component of DLA+FO equation
is the MLLA equation
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• MLLA equation:

(

ω + 2
d

d lnQ2

)

d

d lnQ2
Dg(ω, Q2) = 2CAas(Q

2)Dg(ω, Q2)

−
(

ω + 2
d

d lnQ2

)

as(Q
2)

a

2
Dg(ω, Q2)

(a = 11
3 CA + 4

3TRnf

(

1 − 2CF

CA

)

)

• But we want to keep quark and gluon freedom

• and large x (ω) behaviour of P
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5. Fitting to Data

• Perform fits using usual LO DGLAP evoluition

P ≈ asP
(0)

and then again with DLs resummed

P ≈ asP
(0)

+ PDL

• Fit to charged hadron data
(constraining quark FFs)

• At LO,

1

σ(s)

dσ

dxp
(xp, s) =

1

nf 〈Q(s)〉
∑

q

Qq(s)D
+
q (xp, s)

• Note we have chosen Q =
√

s (usual in DGLAP fits)
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• Fit FFs D(x, Q2
0) at some initial scale Q0

• FFs to be fitted are

1.Dg(x, Q2
0),

2.Duc(x, Q2
0) =

1

2

(

Du(x, Q2
0) + Dc(x, Q2

0)
)

,

3.Ddsb(x, Q2
0) =

1

3

(

Dd(x, Q2
0) + Ds(x, Q2

0) + Db(x, Q2
0)

)

(quarks of identical charge
cannot be distinguished by the data)

• Note from charge conjugation symmetry
(since hadron charges are not measured),

Dq̄ = Dq

• Choose Q0 = 14 GeV,
as

√
s = 14 GeV is the lowest

√
s data

• Set nf = 5

• Only fit to data for which ξ < ln
√

s
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• For each FF, choose parameterization

Di(x, Q2
0) = N exp[−c ln2 x]xα(1 − x)β

• At large and intermediate x,

Di(x, Q2
0) ≈ Nxα(1 − x)β

• At small x

lim
x→0

Di(x, Q2
0) = N exp[−c ln2 1

x
− α ln

1

x
];

c > 0: Gaussian in ln(1/x) of width 1/
√

2c,
centre at −α/(2c) (therefore must have α < 0)
Normalization N

√

π/c exp
[

α2/(4c)
]

For large Q0, small x, this is the behaviour
we expect from DLA
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• Recall at small x that

Dq,q =
CF

CA
Dg

So we expect it is a good approximation to set

cuc = cdsb = cg,

αuc = αdsb = αg

• If we just fitted to small x data, we could also choose

Nuc = Ndsb =
CF

CA
Ng,

but we want to describe large x data too
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• First do standard LO DGLAP fit, i.e. with

P ≈ asP
(0)

Table : Parameter values for the FFs at Q0 = 14 GeV
from a fit to all data using DGLAP evolution in the FO
approach to LO. ΛQCD = 388 MeV. χ2

DF = 3.0
X

X
X

X
X

X
X
X

FF
Parameter

N β α c

g 0.22 −0.43 −2.38 0.25

u+c 0.49 2.30 [−2.38] [0.25]

d+s+b 0.37 1.49 [−2.38] [0.25]
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OPAL 133
OPAL 91
TASSO 44
TASSO 35
TPC 29
TASSO 14

Figure : Fit to data with usual LO DGLAP evolution.
Each curve is shifted up by 0.8 for clarity. ξ = ln 1

x
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• Now fit with DLs resummed, i.e. with

P ≈ asP
(0)

+ PDL

Table : Parameter values for the FFs at Q0 = 14 GeV
from a fit to all data using DGLAP evolution in the
DL+LO+LOδ scheme. ΛQCD = 801 MeV. χ2

DF = 2.1
X

X
X

X
X

X
X
X

FF
Parameter

N β α c

g 1.60 5.01 −2.63 0.35

u+c 0.39 1.46 [−2.63] [0.35]

d+s+b 0.34 1.49 [−2.63] [0.35]
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Figure : As before, but now DLs in the evolution are
resummed. ξ = ln 1

x
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• Resummation: significant decrease in χ2
DF, 3.0 −→ 2.1.

Much better description of data around the peak,
but description beyond the peak not sufficient

• Big increase in ΛQCD, 400 MeV −→ 800 MeV
We chose Q =

√
s.

Had we made MLLA choice of Q =
√

s/2,
the only difference in our fit would be to halve our ΛQCD,
800 MeV −→ 800/2 MeV
(Q always appears in the ratio Q/ΛQCD at LO)

• Recall at small x

Nuc = Ndsb =
CF

CA
Ng,

Ng should only be about double Nuc or Ndsb,
but it is two times too big
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• Hadron mass effects important at small x

• Work with light cone coordinates, V = (V +, V −,VT ),
where V ± = 1√

2
(V 0 ± V 3) and VT = (V 1, V 2)

• Momentum of the electroweak boson in CM frame:

q =

(√
s√
2
,

√
s√
2
,0

)

Momentum of hadron, mass mh, moving along 3-axis:

ph =

(

η
√

s√
2

,
m2

h√
2η

√
s
,0

)

• η is like Nachtmann scaling variable of DIS, η → 1/η,
Lorentz invariant w.r.t. boost along 3-axis

• η is true scaling variable

xp = η

(

1 − m2
h

sη2

)

so mass effects only important at small xp (η)

• Neglect hadron mass, (mh ≪ xp
√

s), then xp ≈ η
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• At leading twist, after factorization,
parton of momentum k fragments into hadron:

k =

(

p+
h

y
, 0,0

)

• Kinematics: η < y < 1

dσ

dη
(η, s) =

∫ 1

η

dy

y

dσ

dy
(y, s, Q2)D

(

η

y
, Q2

)

• Experimentalists measure

dσ

dxp
(xp, s) =

1

1 +
m2

h

sη2(xp)

dσ

dη
(η(xp), s)
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• Redo fits, fit mh
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Figure : Unresummed fit with hadron mass effects
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Figure : Resummed fit with hadron mass effects
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• Now both fits give χ2
DF ≈ 2

• In both cases, mh ≈ 300 MeV,
which is reasonable for sum over π±, K±, p/p

• However, unresummed case: ΛQCD = 1300 MeV

• Resummed case: ΛQCD = 400 MeV

• No significant improvement to description of gluon data
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• Now fit with DLs resummed, mh finite, and OPAL
gluon data included. mh = 302 GeV, χ2

DF = 2.1.

Table : Parameter values for the FFs at Q0 = 14 GeV
from a fit to all data, including the OPAL gluon jet data,
using DGLAP evolution in the DL+LO+LOδ scheme and
with mass effects incorporated. ΛQCD = 490 MeV.
X

X
X

X
X

X
X
X

FF
Parameter

N β α c

g 1.30 5.09 −2.30 0.24

u + c 0.46 1.70 [−2.30] [0.24]

d + s + b 0.53 1.75 [−2.30] [0.24]
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Figure : Resummed fit with hadron mass effects and
OPAL gluon data. ξ = ln 1

x
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Figure : Comparison of OPAL gluon data with gluon FF
from fit where these data are not included and hadron
mass effects are neglected.
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Figure : Now OPAL gluon data and hadron mass effects
included in the fit.
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6. Conclusions

1. Extended DGLAP evolution to small xp

via DLA equation

2. Performed fits to data and found
much improvement in the peak region
compared to FO DGLAP

3. Our scheme reproduces the MLLA
by making certain approximations,
but it is more general

4. Treatment of hadron mass effects lead to
more sensible value of ΛQCD

Further work:

• Apply to NLO global fits to extend range to smaller xp

(currently 0.1 < xp < 1)

• Study other small x effects (SLs?)
to improve large ξ region yet further
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